Pulse NMR of 3He in bulk and powder aerogel

D. A. Tayurskiia, A. V. Klochkova, V. V. Kuzmina, R. R. Gazizulina, M. S. Tagirova, and N. Muldersb

aPhysics Department, Kazan State University, Russia
bPhysics and Astronomy Department, University of Delaware, Newark, USA

In the present work experimental data of 3He pulse NMR in silica bulk aerogel (95%, presented by N.Mulders) and aerogel powder (EM-POWER Co.,LTD, size distribution 5-40 mkm) in a Larmor frequency range 5-20MHz and temperature range 1.5-4 K are reported. We have investigated the 3He spin kinetics directly in adsorbed layer. The spin-lattice relaxation time is linearly proportional to frequency, while spin-spin relaxation time is frequency independent in adsorbed, gaseous and liquid phases in both type of aerogel. We didn’t observe the dependence of T_1 and T_2 of adsorbed 3He on number of atoms on aerogel surface. The magnetic relaxation of whole spin system (gas and liquid phases) takes places directly by 3He adsorbed layer. We didn’t find out changes of magnetic relaxation times of 3He in aerogel at temperature range 1.5-4 K. The T_1 and T_2 of gaseous 3He increases on the order of magnitude if the surface of aerogel is covered by monolayer of 4He. Thus, the aerogel is a system in which the relaxation of the filling liquid or gaseous 3He proceeds only through the adsorbed surface layer. To explain the observed behavior of the longitudinal relaxation rate, a theoretical model of relaxation in the adsorbed layer of 3He taking into account the filamentary structure of the aerogel is proposed.

Section: Quantum Fluids, Helium-3, Helium-4

Keywords: 3He, aerogel, nuclear magnetic relaxation